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Neural Model of Stereoacuity and Depth Interpolation Based on a 
Distributed Representation of Stereo Disparity 
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We have developed a model for the representation of stereo 
disparity by a population of neurons that is based on tuning 
curves similar in shape to those measured physiologically 
(Poggio and Fischer, 1977). Signal detection analysis was 
applied to the model to generate predictions of depth dis- 
crimination thresholds. Agreement between the model and 
human psychophysical data was possible in this model only 
when the population size representing disparity in a small 
patch of visual field was in the range of about 20-200 units. 
Interval encoding and rate encoding were found to be in- 
consistent with these data. Psychophysical data on stereo 
interpolation (Westheimer, 1988a) suggest that there are 
short-range excitatory and long-range inhibitory interactions 
between disparity-tuned units at nearby spatial locations. 
We extended our population model of disparity coding at a 
single spatial location to include such lateral interactions. 
When there was a small disparity gradient between stimuli 
at 2 locations, units in the intermediate, unstimulated posi- 
tion developed a pattern of activity corresponding to the 
average of the 2 lateral disparities. When there was a large 
disparity gradient, units at the intermediate position devel- 
oped a pattern of activity corresponding to an independent 
superposition of the 2 lateral disparities, so that both dis- 
parities were represented simultaneously. This mixed pop- 
ulation pattern may underlie the perception of depth dis- 
continuities and transparent surfaces. Similar types of 
distributed representations may be applicable to other pa- 
rameters, such as orientation, motion, stimulus size, and 
motor coordinates. 

Ever since the time of Wheatstone (1838) it has been known 
that disparities between images presented to the 2 eyes induce 
a strong senstation of depth. Julesz (1960, 197 1) has shown that 
disparity is sufficient in itself, without monocular cues, for stere- 
opsis. Disparity-tuned neurons in visual cortex were first dem- 
onstrated by Barlow et al. (1967), Nikara et al. (1968) and 
Pettigrew et al. (1968) in cats, and by Hubel and Wiesel(l970) 
in monkeys. More recently, Poggio and colleagues have recorded 
extensively within areas V 1 and V2 of macaque visual cortex 
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[see Poggio and Poggio (1984) for a review of these studies]. In 
this paper we develop a model for the representation of disparity 
based on both the psychophysical and physiological data. Al- 
though the focus is on binocular vision, the ideas presented here 
generalize to the neural representation of other parameters. 

The psychophysical data of central interest involve measure- 
ments of the discriminability between different disparities. The 
primary physiological data are measurements of disparity tuning 
for neurons in monkey cortex. By requiring theory to be con- 
sistent with 2 different sources of constraints, the range of pos- 
sible models is greatly restricted. The modeling starts with a 
consideration of a population of disparity-tuned units at a single 
location of the visual field, and the sensitivity of this population 
to small changes in depth, or stereoacuity. Following this, psy- 
chophysical data concerning interactions between nearby stim- 
uli at different depths are taken into account by adding lateral 
connections between units at different locations. The result is 
not a complete model of stereopsis, but only addresses one part 
of the problem-the representation of disparity. 

Alternative encodings of disparity 

There are a number of ways to represent disparity, which can 
be placed into 2 broad categories, local representations or dis- 
tributed representations. In a local representation, disparity is 
unambiguously represented by the activity of a single neuron. 
An example of this is shown in Figure lA, where the value of 
disparity is indicated by which neuron fires. For instance, the 
vigorous firing of a certain neuron means that the disparity is, 
say 5.0’, but if some other neuron fires then the disparity is 7.0’, 
and so forth. To cover the entire range of disparities there must 
be a large number of such narrowly tuned units with minimal 
overlap, each indicating that the stimulus disparity falls within 
a particular small interval. This form of local representation is 
called interval encoding, and has been used almost universally 
in models of stereopsis (Nelson, 1975; Marr and Poggio, 1976; 
Mayhew and Frisby, 1981; Pollard et al., 1985; Pradzny, 1985; 
Szeliski and Hinton, 1985, among others; see Szeliski, 1986, for 
a review of these models). 

A problem with interval coding is the need for many units to 
achieve a high degree of resolution. This was pointed out long 
ago by Young (1802) as he argued against interval coding and 
for population coding in color vision: 

As it is almost impossible to conceive each sensitive 
point of the retina to contain an infinite number of 
particles, each vibrating in perfect unison with every 
possible modulation, it becomes necessary to suppose 
the number limited; for instance to the three principle 
colours. . . . 
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Figure I. Three methods of encoding disparity. A, Interval coding: A 
separate unit is dedicated for each disparity. B, Rate encoding: Disparity 
is encoded by the firing rate of a single neuron. C, Population coding: 
Disparity is encoded in the pattern of activity in a population having 
broad, overlapping disparity tuning curves. 

Almost 2 centuries later, the same problem arises in most mod- 
em models of depth perception, which postulate an indefinitely 
large set of units, each with a high specificity for a particular 
disparity. 

A second form of local representation is rate encoding (Fig. 
1B). Here, a single unit codes all disparity values by its firing 
rate. As disparity increases, the firing rate of the unit increases 
monotonically. One model using a rate-coded representation of 
depth is Julesz’s dipole model (Julesz, 197 1). Another example 
is the model of Mat-r and Poggio (1979), which, as illustrated 
in their figure 7, has roughly ramp-shaped disparity tuning curves 
for near and far disparities, indicating that activity is propor- 
tional to disparity up to some cut-off value. However, compared 
with interval encoding, rate-coding is rarely used in stereo models. 

The final type of encoding we will consider is a distributed 
representation, or population code, which is used in the model 
presented here. In this representation, disparity is encoded by 
the pattern of activity within a population of neural units, each 
broadly tuned to disparity and extensively overlapped with each 
other (Fig. 1 C’). This is a distributed representation because the 
activity of a single unit is ambiguous, given its broad and non- 
monotonic tuning. Rather, the information about disparity is 
distributed in the population, and the ambiguity can be resolved 
only by examining relative activities within the population. The 
most familiar example of this form of encoding occurs in color 
vision, in which there are 3 broad, overlapping mechanisms, 
each of which alone gives little information about wavelength, 
but which jointly allow a precise determination of that param- 
eter (see Discussion). To our knowledge, the only example of a 
distributed representation used to model binocular phenomena 
is that of Vaitkevicius et al. (1984). 

Neurophysiological and psychophysical data 

Physiological data 
The largest body of data on disparity-tuned cells in monkeys 
has been collected by Poggio and colleagues, all within Vl and 
V2 cortex (Poggio and Fischer, 1977; Poggio and Talbot, 198 1; 
Poggio, 1984; Poggio et al., 1985, 1988). Since these data serve 
as the basis of a number of assumptions within the modeling, 
they will be described in some detail. As presented by Poggio 
et al., neurons are grouped into 3 classes based on their disparity 
responses, and we shall find it useful to retain this classification. 
The 3 groups are (1) “near” neurons, broadly tuned for crossed 
disparities, (2) “far” neurons, broadly tuned for uncrossed dis- 
parities, and (3) “tuned” neurons, narrowly tuned for disparities 
close to zero. 

The “tuned” neurons can either be “tuned excitatory” or 
“tuned inhibitory,” depending on whether they are excited or 
inhibited by a restricted range of disparities. They have an av- 
erage bandwidth of 0.085”, and peaks that are almost entirely 
restricted to the range kO.1”. There are small inhibitory lobes 
beyond the central excitation range (or vice versa for tuned 
inhibitory cells). “Near” and “far” neurons are mirror images 
of each other in the disparity domain but otherwise have the 
same properties. “Near” neurons are excited by crossed dis- 
parities and inhibited by uncrossed disparities, while the op- 
posite holds true for “far” neurons. In both cases, the response 
curves have their steepest slope near zero disparity, as they go 
from excitation to inhibition. The excitatory peaks for “far” and 
“near” neurons are on average at about kO.2” disparity with a 
SD of 0.1” (Poggio, 1984). 

In adopting this tripartite division, it should not be forgotten 
that it is an idealization, convenient for summarizing the data, 
but not to be taken too rigidly. Disparity-tuned neurons exhibit 
innumerable idiosyncratic behaviors, which are often difficult 
to fit neatly into any classification scheme. LeVay and Voigt 
(1988), in their study of disparity tuning in cat visual cortex, 
have preferred to emphasize the large number of cells with 
intermediate properties, viewing the 3 classes as prototypes at 
various points along a continuum. There is nothing in the pub- 
lished data to contradict this perspective. Nevertheless, the 3 
classes are convenient reference marks and are now so well 
established we will retain them, even though the model does 
not require such discrete divisions. 

Some recent studies have focused on tracing the anatomical 
pathways along which high concentrations of disparity-sensitive 
cells are found. Such cells appear to be associated with what is 
called the “magno” pathway, being particularly prominent in 
the “thick stripe” cytochrome oxidase-stained regions of V2 
(Hubel and Livingstone, 1987), and also in the subsequent area, 
MT, to which the thick stripes project (Zeki, 1974; Maunsell 
and Van Essen, 1983). It is always a problem to decide which 
anatomical areas are relevant for relating neurophysiology to 
conscious perceptual experiences. All the physiological data un- 
derpinning our modeling were collected in areas Vl and V2. 
Possibly cells at later stages would be more appropriate, in par- 
ticular those of area MT. It happens, however, that the data are 
most complete for the early stages. Also, there is no indication 
that disparity tuning of cells in MT is qualitatively different 
from that in V2 in a way which would affect the class of model 
being considered here. If, for example, all cells in the percep- 
tually relevant anatomical area had narrow disparity tuning with 
nothing analogous to the broad “near” and “far” neurons, the 
present model would not be applicable. 

Psychophysical data 

We focus first on the disparity discrimination threshold curve, 
since the shape of this curve constrains the manner in which 
disparity can be represented within the nervous system. The 
disparity discrimination curve plots the smallest discriminable 
change in disparity as a function of stimulus disparity (i.e., plots 
Ad vs. d). Typically, measuring this curve involves presenting 
2 nearby stimuli with disparities d and d + Ad. The increment 
threshold is the value ofAd for which the subject sees a difference 
75% of the time. Repeating this process for different disparity 
pedestals d produces the discrimination curve. 

The point on this curve with a zero disparity pedestal is the 
conventional stereoacuity, which at fixation is typically around 
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Figure 2. Psychophysical disparity discrimination curve. From Bad- 
cock and Schor (1985). The smallest discriminable change in disparity 
Ad is plotted as a function of a pedestal disparity d. These data are 
used to constrain possible encodings of disparity in the model. 

5”. This is smaller by a factor of about 50 than the width of the 
narrowest cortical disparity tuning curves and a factor of 6 smaller 
than the width of a photoreceptor. This emphasizes the point 
that the ability to distinguish between different depths is not 
simply a matter of switching between cells tuned to different 
disparities. Stereoacuity in macaque monkey is comparable to 
that of humans (Sarmiento, 1975). 

The disparity threshold Ad increases rapidly (roughly expo- 
nentially) as a function of the disparity pedestal d. The minimum 
of this curve occurs for a disparity pedestal of zero, at which 
point stereoacuity is in the range 2”-10”. When the pedestal is 
30’, the increment threshold is typically on the order of 100”. 
Figure 2 is an example of such a curve. Disparity increment 
threshold curves have been measured using a variety of stimuli 
with similar results, including line patterns (Ogle, 1952; Blake- 
more, 1970; Regan and Beverly, 1973; Westheimer, 1979), ran- 
dom-dot stereograms (Schumer and Julesz, 1984), and differ- 
ence of Gaussians stimuli (Badcock and Schor, 1985). 

These data indicate that different depths remain discriminable 
far beyond the limit for which stimuli can be binocularly fused 
(about 10’). It has been well known since the time of Helmholtz 
(1962) that depth can be seen for diplopic stimuli, an effect 
systematically studied by Ogle (1952), Westheimer and Tanz- 
man (1956), and Schor and Wood (1983). The flattening out 
of the disparity discrimination curve in Figure 2 may reflect the 
qualitatively different condition of “patent stereopsis” under 
diplopic conditions. Although such flattening out is not apparent 
in all studies, we have chosen to use data with that characteristic 
as the basis for our modeling. 

A final point concerns the disparity discrimination curve mea- 
sured at eccentricities away from fixation. This was studied by 
Blakemore (1970) and the results are shown in Figure 3. As 
eccentricity increases, the minimum of the curve moves up, 
while the slope of the curve flattens. An interesting consequence 
of these 2 effects is that for large values of d, the discrimination 
threshold Ad may actually get smaller as eccentricity increases. 
(This can be seen by superimposing Figs. 3, a, b, and noting 

Disparity (min) Disparity (min) 

Figure 3. Effect of eccentricity on the disparity discrimination curve. 
From Blakemore (1970). a, 0” eccentricity; b. 10” eccentricity. As ec- 
centricity increases, the curve flattens and the vertex moves up. This is 
modeled by postulating that the disparity tuning curves become broader 
away from fixation. 

that they cross at some point.) The effects of eccentricity on the 
disparity increment threshold curve are also considered in the 
model. 

Modeling depth discrimination 
Preliminary remarks 
We assume that the psychophysical discrimination threshold 
for disparity is the change in disparity sufficient to cause a sta- 
tistically significant change in the activities of the underlying 
neural population. Two factors therefore determine the discrim- 
ination threshold: (1) the amount of neural noise and (2) the 
steepness of neural response as a function of disparity. These 2 
factors define a signal-to-noise ratio. 

If noise is large, then there must also be a large change in 
stimulus to cause a significant change in neural activities, and 
the opposite holds if the noise is small. Regarding the second 
factor, as the tuning curve of a unit becomes steeper, a smaller 
change in the parameter is enough to cause a given change in 
response. Therefore, steep slopes correspond to fine discrimina- 
bility. As a corollary to this, a tuning curve makes its greatest 
contribution to discrimination when the stimulus is away from 
its peak, because the slopes are steepest on the sides of the curve. 
[In the analogous case of color vision, the psychophysical wave- 
length discrimination curve has a number of peaks and troughs 
which can be related to the steep and flat portions of the 3 
chromatic tuning curves (Wyszecki and Stiles, 1982).] It is im- 
portant to emphasize that it is the slopes of the tuning curve 
which are important for discrimination, and not tuning curve 
bandwidths. This view is supported by measurements of ori- 
entation discrimination in cat visual cortex (Bradley et al., 1987) 
where it was found that the stimulus rotation necessary to pro- 
duce a significant change in firing rate was smallest at the steepest 
portions of the neural orientation tuning curve and largest at 
the peak of the curve. 

The concept underlying the stereoacuity model is outlined in 
Figure 4. It shows a subset of 2 disparity tuning curves from a 
much larger population. (In the actual model, the tuning curve 
shapes are somewhat different.) For disparity d,, both units have 
a particular response, indicated by the intersections of the dotted 
line with each of the tuning curves. When a different disparity, 
d,, is presented these responses both change, one increasing and 
the other decreasing. If the net change response summed over 
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Figure 4. Two schematic disparity tuning curves out of a larger pop- 
ulation. As stimulus disparity is changed (for example, from d, to dJ, 
the responses of some units go up and others do down, as indicated by 
the intersection of the dashed lines with the tuning curves. The changes 
in activities of all units in the population are combined to determine 
whether the total change is statistically significant relative to the noise 
in the units. If so, then the change in disparity is considered perceptually 
discriminable. 

all units in the population is significant relative to the noise in 
the units, then we say that a discriminable change in disparity 
has occurred. 

Threshold for discrimination 

The essential question faced by the discrimination model is this: 
given 2 levels of neural activity, is the difference caused by a 
real difference in the environment or does it reflect chance fluc- 
tuations in a noisy system? 

Assume that there are N disparity-sensitive units covering a 
small patch of visual field, each tuned to a different disparity. 
The noise in the firing of these units is assumed to be Gaussian, 
and their variances are proportional to mean activity. The mean 
response of a unit i to a stimulus disparity d, is then 

R,, =.W,), 

and the variance of the response is 

(14 

u*,, = kR,,, 

wheref(d) is the tuning curve function. When a second stimulus 
with disparity d, is presented to the unit, it will respond with 
mean activity 

and variance 

R,z = f(4) (lb) 

azi2 = kR,,. 

In the modeling presented below, the proportionality constant 
k between firing rate variance and mean is set to 1.5. None of 
the results are sensitive to changes in this parameter by a factor 
of 2. Such a proportionality between variance and mean is sup- 
ported by recordings in both cat and monkey visual cortex (Dean, 
1981; Tolhurst et al., 1981, 1983; Bradley et al., 1987), with 
ratios typically in the range 1.5-2.0. 

Because of noise, the same change in response, from Ri, to 
R,2, could have arisen by chance rather than by a difference in 
stimuli. The probability p, that the response change of the ith 

unit arose by a change in stimulus is given by the following 
equations. First, the number of SDS separating the 2 responses, 
d’, is 

d’= (R,, - R,,//m. 

Given this number, the value of p, is given by the complement 
of the cumulative normal distribution function: 

p,=l- --& -1 e-x2/2 dx. 
s (3) 

Again, this is the probability that the change in response of a 
single unit arose because of a real change in the environment. 
The stimulus, however, is being simultaneously presented to the 
entire population of N units. Therefore, the discrimination 
threshold is the joint probability of a significant change in the 
activity of the population as a whole. Assuming that noise in 
units is uncorrelated (the consequences of which will be dis- 
cussed below), the joint probability is 

N 
p = 1 - n (1 - p,). 

,=I 

(This model does not consider probability summation among 
units at different spatial positions, since the spatial extent of 
stimuli in stereoacuity tasks is generally restricted.) 

We define the discrimination threshold as the change in dis- 
parity which causes p = 0.75. That is, 2 disparities are percep- 
tually distinguishable when there is a 0.75 probability that the 
difference in neural population activity is not due to chance. 
This criterion is arbitrary but follows the custom in psycho- 
physics for 2 alternative-forced-choice tasks. 

To generate a point on the disparity discrimination curve, a 
base disparity d is selected and the responses of all units to that 
disparity determined. Then the disparity is slightly incremented, 
the responses of the units to the new disparity d + Ad is deter- 
mined, and the probability that the difference in responses did 
not arise by chance calculated. The increment Ad is increased 
until the p = 0.75 criterion is met, and this value of Ad is plotted 
on the Ad vs d curve. Repeating the process with different values 
of d generates the entire curve. A detailed discussion of the 
probabilistic approach to discrimination used here can be found 
in Green and Swets (1966). 

Equation 4 combines probabilities in a manner that assumes 
statistical independence, which is equivalent to assuming that 
noise among the units is uncorrelated. To view what effect this 
assumption has on the model’s results, we also generated dis- 
parity discrimination curves assuming the opposite, that noise 
in all units was perfectly correlated. This means that, instead of 
assuming a disparity change was discriminable when the pooled 
probabilities for the population reached 0.75, we assumed that 
the change was discriminable when the unit showing the largest 
change reached 0.75 by itself. Under this new rule, the shape 
of the resulting discrimination curve was essentially the same, 
although the fine structure (small bumps and wiggles) was more 
pronounced. However, the curve was shifted upwards, because 
there is no probability summation between units in the perfectly 
correlated case. Decreasing noise shifts the discrimination curve 
back down, so there is a trade-off between assumptions about 
the amount of neural noise and the amount of noise correlation. 
This trade-off favors at best a moderate degree of correlation, 
given the data on levels of noise cited earlier. 
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Model of disparity tuning curves 

The first step in applying the model is to assign a mathematical 
form to the disparity tuning curves. We do not attempt to de- 
scribe how these disparity-tuned properties are synthesized from 
monocular units. Furthermore, no attempt is made to describe 
the matching process between images to the 2 eyes or what 
aspects of the images may act as tokens during matching. 

Following the classification of Poggio (1984) model tuning 
curves are divided into 3 classes: near, far, and tuned. The 
equation for the response of a “tuned” unit is 

R = 1.5 exp[ -(d - d,,,)Va*] 
- 0.5 exp[-(d - d,,$/(2@], (5) 

which is illustrated in Figure 5b. This is the difference of 2 
Gaussian curves, one broader than the other, whose peaks are 
at the same position. Although tuned-inhibitory units are also 
observed experimentally, only tuned-excitatory units are used 
in the model because it is the magnitude of change and not its 
polarity that is relevant when determining discriminability. For 
the purposes of this model, therefore, both types of tuned units 
are equivalent. The equation for a “near” unit is 

R = l.l3(exp[-(d - d,,&a2] 
- exp[-(d - (d,,, + u))Vcr2 - 1.01) 

and the equation for its mirror image, a “far” unit, is 

(6) 

R = l.l3(exp[-(d - dpeaJ2/u2] 
- exp[(d - (d,,, - u))Vu2 - 1 .O]). (7) 

Examples of these curves are shown in Figure 5, a, c. The 
asymmetries of the “near” and “far” tuning curves result from 
shifting the peaks of the 2 Gaussians by an amount c prior to 
subtracting them. 

All 3 classes of curves have positive and negative lobes, which 
indicate modulation around a spontaneous level of activity, 
marked by the dashed zero lines in Figure 5. However, when 
actually performing calculations, the tuning curves were shifted 
up by 0.3 to eliminate negative values and renormalized to have 
a peak activity of 1.0. 

Calculations of disparity threshold curves 

The task now is to find a set of tuning curves that generate a 
disparity discrimination curve resembling the psychophysical 
data (Fig. 2) within the constraints imposed by the physiology. 
We first tried, unsuccessfully, to do this with just 3 tuning curves 
(Fig. 6a), one from each class, which were selected with values 
of dpeak and u corresponding to average curves described by 

Figure 5. Examples of model disparity tuning curves. a, Near unit; b, 
“tuned” unit; c, far unit. Their shapes resemble those described by 
Poggio (1984). Populations of disparity-tuned units are formed by vary- 
ing 2 parameters, one defining peak location and the other defining 
tuning bandwidth (Eqs. 5-7). The model does not depend on having 
these exact shapes, nor does it require them to be split into discrete 
classes. 

Poggio (1984). The resulting discrimination curve (Fig. 6b) was 
entirely unsatisfactory. The prominent spikes occur because there 
was insufficient overlap between mechanisms. The situation 
could be alleviated somewhat by ignoring physiological con- 
straints on tuning bandwidths and choosing a set of 3 curves 
giving the smoothest possible curve (that is, expand the width 
of the “tuned” mechanism so that its steepest portions coincide 
with the peaks of the “near” and “far” mechanisms). Though 
better, the resulting discrimination curve was still not satisfac- 
tory because it had a broad U-shape rather than the sharp V-shape 
found experimentally. 

nificant change in shape) to levels indicated by the psycho- 
physics. However, that amount of noise is much less than that 
measured physiologically. Another way to shift the curve down 
would be to increase the size of the population, because of 
probability summation (Eq. 4); i.e., since probability summa- 
tion is being carried out over more units, a smaller difference 
in disparity leads to a statistically significant change in the pooled 
activity. This argument suggests that there must be more than 
3 units engaged in encoding disparity at a particular location in 
the visual field. Furthermore, the additional units should have 
a range of different tuning curves to deal with problems in the 
discrimination curve shape discussed in the previous paragraph. 

Another problem was that the curve in Figure 6b was too The next step was to add additional tuning curves to the 
high, not dropping below a discrimination threshold of 70”. population. After various attempts, we found the following rule: 
Decreasing the noise parameter k in Eq. 1 from 1.5 to 0.02 make the bandwidth of each tuning curve proportional to the 
shifted the disparity discrimination curve down (without sig- disparity of the tuning curve peak. This always placed the steep- 
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Figure 6. a, A population of 3 tuning 
curves for encoding disparity. These 
roughly match the average character- 
istics of near, far, and tuned units de- 
scribed by Poggio (1984). We were un- 
able to model disparity discrimination 
curves with this population, or any oth- 
er population of 3 units. b, Disparity 
discrimination curve produced by the 
population of units in a (which should 
be compared to the data in Fig. 2). The 
spiky appearance occurs because of in- 
sufficient overlap between tuning curves. 
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est portion of the near and far tuning curves near zero disparity, 
producing fine discrimination at that point. 

The smoothness of the discrimination curve improved as 
more tuning curves were added, and we achieved a satisfactory 
result with a minimum of 17 mechanisms (Fig. 7~2, parameters 
in Table 1). The resulting discrimination curve is shown in 
Figure 7b. It is interesting to note that the fine stereoacuity at 
zero disparity is produced not by the narrow “tuned” mecha- 
nisms, but by the “near” and “far” mechanisms which have a 
confluence of their steep portions at zero. Although “tuned” 
mechanisms also had steep slopes, they were not concentrated 
at any one disparity. 

The discrimination curve in Figure 7b flattens to a shallower 
slope at a disparity of about 20’. The degree of flattening can 
be increased in the model by moving the peaks of the most 
distal near and far units out to higher disparities. Also, the 
flattened portion of the curve does not continue beyond the 
bounds of the graph in Figure 7b. Rather, at a pedestal disparity 
of about loo’, the curve abruptly turns upward and climbs al- 
most vertically, as disparity falls along the shallow tail of the 
last tuning curve. This means that, under this model, there is a 
limit beyond which disparity is not discriminable by stereo- 
scopic mechanisms. 

No special significance should be placed on the number of 
mechanisms we used, 17. Rather, we wish to emphasize the 
more qualitative point that 3 mechanisms is insufficient, and 

offer 17 as a rough estimate of the minimum size of the pop- 
ulation encoding disparity. In addition, no claim is made that 
the tuning curves presented here are unique. For example, good 
discrimination curves can be generated using simple Gaussian 
tuning curves without the inhibitory lobes, which are only in- 
cluded to be consistent with the physiology. 

More tuning curves can be used, however. Figure 8b shows 
a discrimination curve generated by a population of 200 units 
(Fig. 8a), whose peaks were chosen at random with a normal 
distribution around the “prototypical” tuning curves shown in 
Figure 6a. As before, each tuning curve has its bandwidth pro- 
portional to its peak location, and the noise parameter k in Eq. 
1 is set to 1.5. The 3 classes of tuning curves were in the ratio 
1:2: 1 in order to more closely correspond to Poggio’s (1984) 
observation that “tuned” units are most numerous. 

The curve generated by 200 units retains the same shape as 
that produced by 17 units but is shifted down because of in- 
creased probability summation in the larger population. Its ver- 
tex was at about 1.0” (Fig. 8b), slightly below the best experi- 
mental values. It would not be possible to have more than about 
200 units without pushing stereoacuity to unrealistically low 
levels. Under this model, therefore, there is a lower limit of 
roughly 20 units and an upper limit of roughly 200 units in- 
volved in the output representation of disparity at a particular 
position in the visual field. This does not include additional 
binocular units participating in various underlying circuits; these 

Figure 7. a, The smallest population 
(17 units) judged sufficient to give an 
adequate representation ofthe data. Pa- 
rameter values are given in Table 1. 
Tuning curve width increased with peak 
location, so that the steepest portions 
of the near and far curves all fall near 
zero disparity. Since discriminability 
depends on tuning curve slope, this or- 
ganization produced highest discrimi- 
nability at zero. This population gives 
a rough indication of the minimum size 
needed to encode disparity. b, Disparity 
discrimination curve produced by the 
population in a (which should be com- 
pared to data in Fig. 2). 
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bounds refer only to the final output that can be assayed by 
perceptual reports. 

Although the model with 200 units appears more unwieldy 
than that with 17 units, it offers the compensating advantage of 
greater robustness. The 17-unit model required careful fine tun- 
ing of the set of tuning curves to produce a reasonably smooth 
discrimination curve (although small wiggles remain visible). 
With the 200-unit model, equivalent results were obtained just 
by picking them at random. So the first advantage of having 
representation mediated by a large population is a tolerance for 
sloppy construction. A second advantage is that a large output 
set allows the loss of units without major degradation in per- 
formance. Overall, then, having many units in the output rep- 
resentation trades parsimony for robustness. Nevertheless, we 
retained the model with 17 mechanisms for computational con- 
venience and ease in interpreting the results. All subsequent 
results in this paper are based on that model. 

Effect of eccentricity on the shape of the discrimination curve 
In Blakemore’s (1970) data (Fig. 3), the discrimination curves 
became shallower when measured away from fixation. We mod- 
eled this by scaling the 17 tuning curves to have broader widths 
and have their peaks extend over a greater range. This was done 
by multiplying the parameters in Table 1 (both dFal, and a) by 
a single constant. Figure 9a shows the 17 tuning curves after 
multiplication by 3.0, and Figure 9b shows the resulting dis- 
parity discrimination curve. Compared to the original curve in 
Figure 7b, the minimum of the curve has increased and the 
slopes of the curve have decreased. These are the same effects 
seen in Blakemore’s (1970) data. It can also be seen that the 
fine-scale bumps are more prominent in Figure 9b than in Figure 
7b, the result of a coarser sampling density of tuning curves. 
They would diminish upon addition of additional curves to the 
population, and in any case are still below the resolution of the 
data. 

The model therefore predicts that when disparity-tuning is 
measured for cortical cells away from the fovea1 projection, they 
will be broader and have more scattered peaks than the more 
centrally located cells. Furthermore, the model predicts that the 
formula describing the mean disparity-tuning bandwidth ofneu- 
rons as a function of eccentricity will be the same as the formula 
describing psychophysical stereoacuity as a function of eccen- 
tricity (even though it is the slope and not the bandwidth of 
tuning curves that directly determines stereoacuity). That is, if 

Disparity (min) 

Figure 8. a, Population of 200 dis- 
parity tuning curves. A population of 
this size is roughly the maximum al- 
lowed by the model. b, Disparity dis- 
crimination curve produced by the 
population in a. 

one is logarithmic, then the other will also be logarithmic, or if 
one is linear, then the other will also be linear, etc. 

Predictions of interval and rate codes 
A distributed representation for encoding disparity has been 
constructed that is consistent with physiological and psycho- 
physical data. Can models based on interval encoding (Fig. 1A) 
or rate encoding (Fig. 1B) also account for these data? 

Most models of stereopsis are based on interval encoding. 
The disparity tuning curves used by Marr and Poggio (1976) as 
well as many others are Dirac 6 functions, which are “spike”- 
shaped curves of unit area that are “infinitely” narrow but “in- 
finitely” high. For the sake of physical plausibility, we broaden 
these tuning curves to a narrow but appreciable width (Fig. lOa), 
using Gaussians with slight overlap. The resulting disparity dis- 
crimination curve (Fig. lob) does not resemble the data. The 
problems are first, insufficient overlap between mechanisms, 
leading to the “spiky” appearance of the curve at the fine level, 

Table 1. Parameter values for the disparity tuning curves in Figure 
7a, as defined by Eqs. 5-7 

Tuning d 
curve Type (E min) [arc min) 

1 Near -0.540 0.900 
2 Near -0.380 0.650 
3 Near -0.270 0.450 
4 Near -0.180 0.320 
5 Near -0.130 0.180 
6 Near -0.100 0.110 
7 Tuned -0.075 0.075 
8 Tuned -0.038 0.064 
9 Tuned 0.000 0.062 

10 Tuned 0.038 0.064 
11 Tuned 0.075 0.075 
12 Far 0.100 0.110 
13 Far 0.130 0.180 
14 Far 0.180 0.320 
15 Far 0.270 0.450 
16 Far 0.380 0.650 
17 Far 0.540 0.900 

The tuning curves in Figure 9~2, for an eccentricity away from fixation, are obtained 
by multiplying both dpak and CJ in this table by 3.0. 
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Figure 9. a, Population of disparity 
tuning curves used to model disparity 
discrimination at eccentricities away 
from fixation (Fig. 3). This is the same 
as the set shown in Figure 7a, except 
that the tuning curves have been broad- 
ened and the peaks extended over a 
wider range. b, Disparity discrimina- 
tion curve produced by the population 
in a. Compared to the curve in Figure 
lb, this curve has its vertex shifted up 
and its sides at a more shallow slope. 
These were the same effects seen in the 
data of Figure 3 as eccentricity was in- 
creased. 
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and second, uniform widths in their tuning, leading to the es- 
sential flatness of the curve at the gross level. These are problems 
independent of the exact shape of the tuning curves. The only 
way to overcome both these difficulties is to broaden the tuning 
curves to overlap more, in effect turning the interval code into 
a population code. We conclude that representing disparity with 
an interval code is inconsistent with the psychophysical data. 

Rate encoding, on the other hand, could account for the psy- 
chophysical data very well. The disparity response curve in 
Figure 1B has a steep slope near zero disparity, leading to fine 
discriminability, and flattens out for larger disparity values (both 
positive and negative), where discriminability is poor. With the 
appropriate flattening function, a V-shaped discrimination curve 
can be generated. Rate encoding offers the most parsimonious 
accounting for the psychophysical disparity discrimination data 
considered in isolation. Unfortunately, there is no evidence for 
neurons having such monotonic disparity responses, so this mode 
of encoding must be rejected. 

Depth interpolation 

Thus far we have modeled the representation of disparity at a 
single small patch of visual field. In this section the model is 
extended to include interactions between nearby patches, which 
requires the units to influence each other through a network. 
This extension of the model will be based upon psychophysical 
data concerning depth interpolation. 

Figure 10. a, A population of tuning 
curves implementing an interval en- 
coding scheme (Fig. lA), such as used 
by Marr and Poggio (1976). The shapes 
of the curves are not important, but the 
lack of overlap between them is a crit- 
ical aspect of interval encoding. b, Dis- 
parity discrimination curve produced 
by the population in a. The spikiness 
of the curve would occur for any inter- 
val encoding scheme, since it results 
from the lack of overlap between tuning 
curves. (The spike at zero disparity is 
smaller because it marks the splice point 
where the task shifts from finding the 
least discriminable disparity decrement 
to the least discriminable increment.) 

b. Disparity discrimination curve 
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Preliminary remarks 

In random-dot stereograms, the surface of the square floating 
in depth appears solid, even though the dots may be quite sparse 
and most of the stereogram is blank. Smooth surfaces are per- 
ceived even for complex shapes, which may be inclined or curved 
in depth. This suggests that when a stereogram dot is matched, 
it influences the perceived depth of neighboring blank locations. 

Rather than deal with something as complex as a random- 
dot stereogram, interpolation can be studied in its simplest form: 
the mutual warping in depth at just 2 nearby spatial locations. 
Such psychophysical experiments have been done by Westheim- 
er (1986a) [see also Westheimer (1986b), as well as Westheim- 
er and Levi (1987)]. During these experiments (Fig. 1 l), the 
disparities of 2 lateral lines (labeled A) were set to a series of 
values by the experimenter. The disparities of 2 nearby inner 
lines (labeled B) were kept at zero. The basic observation was 
that the presence of depth at A warped the perceived depth at 
B to nonzero values. The amount of warping was quantified by 
having the subject adjust the disparity of the middle line to 
produce the same apparent depth as the lines at B. 

The effect of the lines at A upon those at B depended upon 
their lateral separations. For small separations, less than about 
2’-8’ depending on subject and stimulus, moving the lines at A 
in depth dragged the perceived depth of B in the same direction. 
As the separation increased, this attractive interaction decreased 

a. Disparity tuning curves 
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Figure Il. Schematic of the setup used by Westheimer (1986a) to 
measure lateral interactions between nearby stimuli at different depths. 
The circles represent lines seen by the observer. When the outer lines 
A were moved in depth, the apparent depth of the nearby lines B were 
dragged along with them, although the physical disparities of B remained 
unchanged. For small spatial separations between A and B, B was dragged 
in the same direction as A (attraction), and for larger separations, B was 
repulsed. The central line was used to monitor the apparent depth at B. 

and then reversed so that the 2 lines appeared to repel each 
other. That is, as the lines at A moved back in depth, the lines 
at B appeared to move forward. This repulsive effect extended 
over a much broader spatial range than the attractive effect. 
Repulsion was still evident at the maximum lateral separation 
tested, 12’. 

Network model: qualitative aspects 

The opponent spatial organization of depth attraction and re- 
pulsion in Westheimer’s psychophysical data immediately sug- 
gests an old idea in neuroscience: short-range excitation and 
long-range inhibition between neurons (Ratliff, 1965). That is 
what our model will implement. 

Assume that the entire population of 17 disparity-tuned units 
used previously (Fig. 7a) is replicated at each spatial location. 
A unit at one location interacts with units at neighboring lo- 
cations to form a network. Assume further that a unit interacts 
only with other units (at different locations) tuned to the same 
disparity, as indicated in Figure 12. If units tuned to the same 
disparity are spatially close, there is mutual excitation, but if 
they are farther apart, there is inhibition. The modeling ofspatial 
interactions is only concerned with mean activities, so that the 
noise discussed in the discrimination modeling is no longer a 
factor. 

Before proceeding, several points should be made about the 
network. First, it is worth emphasizing that no strong signifi- 
cance is placed on having exactly 17 mechanisms. This is just 
a minimum number that produced reasonable results in the 
discrimination modeling, and it is convenient to work with a 
minimal model. Second, although the model treats excitation 
as occurring between closely spaced units, other interpretations 
are possible. Alternatively, it may reflect stimulus summation 
within a single unit rather than mutual excitation between 2 

Tuning Curve 1 

Tuning curve 2 

Tuning curve 17 

Position A Position B 

(disparity 1) (disparity 2) 

l 0 

l l 

l l 

Figure 12. Model configuration for producing depth attraction and 
repulsion. Disparity at each position was represented by a population 
of 17 disparity-tuned units (Fig. 74. There were lateral interactions 
between units at A and B tuned to the same disparity, which were 
excitatory if the separation between the 2 was small, and inhibitory if 
the separation was larger. There were no interactions between units at 
a single position. 

units. Third, the assumption that only units tuned to the same 
disparity interact may be more restrictive than needed. There 
could also be weaker interactions with units tuned to other 
disparities, which taper offwith increasing difference in disparity 
tuning. Fourth, we assume that no interactions occur within the 
set of disparity-tuned mechanisms located at a single location. 
In the future it may be necessary to add such connections as 
the model is applied to other binocular phenomena. 

Finally, when we say that there is a representation of disparity 
at each spatial position, we must be more precise about the term 
“position.” Each encoding population represents disparity for 
some patch of visual field. For present purposes, the size of these 
patches may be considered the area subserved by a single cortical 
column, but this is an empirical question, and in any case spatial 
scale does not affect the formal structure of the model. Similarly, 
the scale of the lateral interactions is also an empirical question. 
Therefore, units are described as being “close together” or “far 
apart,” and the specific values are left for experimental inves- 
tigation, although the psychophysical data suggests interactions 
confined to a radius of about a quarter to a third of a degree. 



2290 Lehky and Sejnowski l Neural Model of Stereoacuity 

Figure 13. Activity diagrams, show- 
ing the patterns of activity when the 
population of 17 units (Fig. 7~) was pre- 
sented with different disparities. The 
height of each line indicates a unit’s re- 
sponse. The position of a line along the 
disparity axis indicates the value of the 
tuning curve peak for that unit. Each 
disparity produced a unique pattern of 
activity, which can be thought of as a 
representational spectrum. The 2 left- 
handpanels show activity patterns when 
there were no lateral interactions, such 
as when a single disparity stimulus is 
presented in isolation. ai, Response to 
a disparity of 0.00’. bi, Response to a 
disparity of 3.00’. The 2 right-hand 
panels show new activity patterns aris- 
ing when 2 disparity stimuli were pre- 
sented simultaneously at nearby posi- 
tions, with excitatory interactions 
between positions. aii, New pattern in 
response to O.OO’, which should be 
compared to ai. bii, New pattern in re- 
sponse to 3.00’, which should be com- 
pared to bi. 

Depth attraction 

i. Population activity patterns ii. Population activity patterns 
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Network model: quantitative aspects 
The modeling of depth attraction and repulsion is based on 
interactions between units at just 2 spatial positions, A and B 
(Fig. 12). The following matrix equation defines these interac- 
tions for the ith mechanism of the 17: 

Mechanism i: i = 1, 17, (8) 

where I+(d,) is the response that the ith mechanism at position 
A has to disparity d, in the absence of lateral interactions, R(d,) 
represents the same at position B, and finally r,.,l and rBi are the 
activities when lateral interactions are included. The parameters 
ka, and kLA are synaptic weights between units at A and B. A 
positive value indicates excitation, and a negative one indicates 
inhibition. For all simulations, connection strengths were set to 
either kO.5. 

Given knowledge of R’(d,J and R’(d,), found by looking at 
the disparity tuning curve for the ith mechanism (Fig. 7a), Eq. 
8 is easily solvable. The process is repeated for all 17 tuning 
curves. In this manner, the lateral spatial interactions transform 
an initial pattern of activity at each position into a new pattern. 
All calculations are made with spontaneous activity normalized 
to zero. If, following consideration of lateral interactions, any 
activities are greater than 1 .O, the population is normalized so 
that no activities exceed that maximum. 

Interpretation of the population code 
The responses of a neural population can be shown in an “ac- 
tivity diagram,” such as the ones in Figure 13. In an activity 
diagram, the response of each of the 17 units at a particular 
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position is indicated by the height of a line. The height may be 
positive or negative, relative to spontaneous activity. The line 
is at a position along the horizontal axis corresponding to the 
peak of the tuning curve for the unit in question. That is, the 
horizontal positions of the 17 lines correspond to the peaks of 
the 17 tuning curves in Figure 7a. 

Each disparity resulted in a unique pattern of activity. For 
example, a disparity of 0.00’ at position A, without any stimulus 
at B, resulted in the pattern shown in Figure 13ai. A disparity 
of 3.00’ at position B, in the absence of any stimulus at A, 
produced the pattern shown in Figure 13bi. Presenting both 
simultaneously, 0.00’ at A and 3.00’ at B, resulted in the patterns 
of activity shown in Figure 13aii, bii, respectively. These pat- 
terns differed from the original ones because of lateral interac- 
tions. For this example, the synaptic weights k in Eq. 8 were set 
to +0.5, indicating mutual excitation between the 2 positions. 

What disparities do the new patterns of activity in Figure 
13aii, bii represent? There are a number of solutions to the 
problem of interpreting a pattern of activity in a neural popu- 
lation. One is to assign an interpretation based on the most 
active unit. This might work in an interval encoding scheme 
but is incompatible with the sort of population coding found 
necessary to explain the depth discrimination data. Another is 
to assign an interpretation based on some “center of gravity” 
calculation within the population, in which a weighed average 
is taken of tuning curve peaks relative to their activities. How- 
ever, this method assigns a unique depth to each point and 
would run into trouble when we consider transparent surfaces 
below. The method we shall use considers the pattern of activity 
in a population as forming a “representational spectrum” ir- 
reducible to anything simpler and assigns an interpretation to 
the pattern by a template matching technique described below. 

The template matching works as follows. First, for every pos- 
sible disparity a canonical activity pattern is established. This 
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Figure 14. Root mean square (RMS) error curves used to assign an 
interpretation to the new patterns of activity in Figure 13aii, bii. The 
RMS difference between the new pattern and all possible canonical (i.e., 
unperturbed) patterns is calculated and plotted. The new pattern is 
assigned the disparity of the best-fit canonical pattern, indicated by the 
minimum of the RMS curve. a, RMS curve for the pattern shown in 
Figure 13aii. The minimum occurs at 1 .OO’, and the pattern in Figure 
13aii is interpreted as representing that disparity. The vertical line shows 
the physical stimulus disparity (that of Fig. 13ai, 0.00’). Thus, lateral 
interactions have shifted the apparent disparity at this location from 
0.00’ to 1.00’. b, The RMS curve for the pattern in Figure 13bii. The 
minimum RMS error occurs at an apparent disparity of 2.16’. The 
vertical line shows the physical stimulus disparity (that of Fig. 13bi, 
3.00’). 

canonical pattern is simply the pattern produced in the popu- 
lation when a disparity is presented in the absence of any per- 
turbing lateral influences. Figure 13ai, bi are canonical patterns 
for disparities 0.00’ and 3.00’, for example, because they are 
the responses to a single disparity stimulus without any lateral 
interactions. On the other hand, Figure 13aii, bii are not ca- 
nonical patterns for any disparity because those precise patterns 
cannot be generated by any single disparity stimulus in isolation 
since they are affected by lateral perturbations. 

Under template matching, an arbitrary activity pattern is as- 
signed a disparity by finding which canonical pattern matches 
it best. A variety of matching rules can be used. We have chosen 
to minimize the root-mean-square (RMS) error between the 
arbitrary patterns and the canonical patterns, with the RMS 
error determined for the population as a whole. This matching 
procedure is just a formalism of the model, and we do not expect 
that it literally occurs in the brain; there is, ofcourse, no evidence 
for neural circuits calculating RMS errors. It is intended to 
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Figure 15. a, Summary of the results in Figures 13 and 14. Black dots 
show the original disparities when each of the 2 stimuli was presented 
individually (Fig. 13ai, bi). White dots show the new, apparent dispar- 
ities (Fig. 13aii, bii, as interpreted by Fig. 14, a, b), arising from inter- 
actions between simultaneously presented stimuli. The excitatory in- 
teractions produced an apparent attraction between the disparities. b, 
Summary of results when the procedures shown in Figures 13 and 14 
were carried out with inhibitory interactions rather than excitatory ones. 
In this case, the disparities show an apparent repulsion. 

mirror the results of the pattern interpretation process in the 
brain, and not the actual process itself. 

Depth attraction and repulsion between 2 locations 

The template method will be applied to determine the disparities 
represented by the 2 activity patterns shown on the right in 
Figure 13. For Figure 13aii, the RMS error between that pattern 
and all possible canonical patterns is calculated, and plotted in 
Figure 14~. The minimum of this graph indicates that Figure 
13aii most closely matches the canonical pattern for 1 .OO’. We 
say, then, that the neural activity shown in Figure 13aii rep- 
resents the disparity 1 .OO’ and is responsible for producing the 
sensation of that depth. Followingthe same procedure for Figure 
13bii (with RMS errors plotted in Fig. 14b), that pattern is 
interpreted as representing the disparity 2.10’. 

The results in Figures 13 and 14 are summarized in Figure 
15~. It shows that mutual excitation between 2 positions causes 
an “attractive” effect in the apparent disparities at both posi- 
tions. At position A, the disparity has shifted up from 0.00’ to 
1 .OO’, and at position B, it has shifted down from 3.00’ to 2.10’. 
On the other hand, if the interactions are inhibitory, then there 
is a “repulsive” effect, as shown in Figure 15b. (The activity 
diagrams and RMS curves for the inhibitory case are not shown.) 

In the psychophysical experiments described earlier, Westhei- 
mer (1986a) found depth attraction between 2 stimuli when 
they were spatially close and repulsion when they were further 
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Figure 16. Stereo interpolation data (black dots) from Westheimer 
(1986a) based on the experimental setup in Figure 11. The apparent 
shift in disparity at B is shown as a function of a real shift in the disparity 
at A. This line shows predictions of the model. 

apart. These effects are duplicated in the model by using excit- 
atory connections to produce the short-range depth attraction 
or inhibitory connections to produce the longer-range depth 
repulsion. 

Another aspect of Westheimer’s data can be compared with 
our model. Referring again to the experimental setup in Figure 
11, as the lines at A are moved in depth they drag the apparent 
depth of the nearby lines at B along with them. Figure 16 shows 
the apparent shift in depth at B as a function of the shift in real 
depth at A, for a fixed lateral separation between A and B. The 
result of the model is superimposed on the data points (synaptic 
weights k = 0.5 in Eq. 8). The model predicts that if data were 
collected for larger disparities, the curve would fold over. Chang- 
ing the synaptic weights k changes the slope of the central straight 
portion of the curve but does not change the position where it 
folds. 

Interpolation through a blank space 
In this section, the model is expanded to 3 locations, but with 
disparity stimuli present at only the 2 lateral locations. In the 
new situation (Fig. 17), there is a complete set of 17 mechanisms 
at each of 3 positions, A, B, and C, but there is no stimulus at 
the middle one. (Note that “no stimulus” is different from a 
stimulus of zero disparity.) This is similar to a random-dot 
stereogram in which a large fraction of the space is blank, yet 
a solid surface is perceived. What pattern of activity is induced 
in the blank position B by the lateral spread of activity from 
positions A and C? The answer depends on the disparity gradient 
between A and C. [Disparity gradient is defined as Ad/Ax, where 
Ad is the disparity difference between 2 positions and Ax is the 
difference in the positions themselves (Burt and Julesz, 1980).] 

The equation for interactions between populations at the 3 
positions is analogous to that given earlier for 2 positions (Eq. 
8). Here, there is a 3 x 3 synaptic weight matrix: 

[$J 2: ~~;l[~]=~.~] 

Mechanism i: i = 1, 17. (9) 

In this case, the synaptic weight matrix contains connections 
only between closest neighbors, with weights k set to zero for 
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Figure 17. Model for depth interpolation, analogous to Figure 12. A 
population of 17 units was used at each position to represent disparity. 
The pattern of activity impressed at the middle location, which received 
no stimulus, was due to the spread of activity from the 2 lateral positions, 
as might occur in the blank regions of a sparse random-dot stereogram. 

units further apart, though this may not be true in general. For 
the simulations described below, the k’s were all set to 0.5. 

First consider stimuli with a small disparity difference be- 
tween positions A and C (-3.00’ and +3.00’, respectively). 
Figure 18ai shows the response to the stimulus at A when pre- 
sented by itself, and Figure 18ci shows the response to the stim- 
ulus at C when presented by itself. Figure 18bi is blank because 
there is no stimulus there. When stimuli at A and C are presented 
simultaneously, new patterns of activity arose because of lateral 
interactions. The new pattern at A is shown in Figure 18aii and 
at C in Figure l&ii. Now, however, a pattern of activity also 
arose in the middle position B (Fig. 18bii). Disparities were 
assigned to these patterns using the same RMS error-minimi- 
zation procedure described earlier. The relevant RMS error 
curves are shown in Figure 19, a-c, and the minima of these 
curves indicate the disparities assigned to the patterns in Figure 
18aii-cii. 

As a consequence of indirect interaction through the middle 
position B, the disparity at A had shifted up from -3.00’ to 
2.66’, and the disparity at C had shifted down from +3.00’ to 
+2.66’. The pattern of activity that forms at the middle point 
B represented O.OO’, the average of the 2 lateral disparities. These 
results are summarized in Figure 22a. We have not investigated 
if the interpolation for small disparity differences is always lin- 
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Figure 18. Activity diagrams, analo- 
gous to Figure 13, for the 3 positions 
shown in Figure 17. This example is for 
a small difference in disparity between 
the 2 lateral positions and excitatory 
interactions. The 2 left-hand panels 
show unperturbed patterns of activity, 
when each stimulus was presented in- 
dividually. ai, Response to disparity of 
-3.00’. bi, No pattern because no stim- 
ulus was presented at the middle po- 
sition. ci, Response to disparity of 
+3.00’. The 2 right-hand panels show 
new patterns arising when stimuli at dif- 
ferent positions are presented simulta- 
neously, due to lateral excitation. aii, 
New pattern in response to -3.00’, 
which should be compared to ai. bii, 
New pattern arising where there was no 
previous response. cii, New pattern 
arising in response to +3.00’, which 
should be compared to ci. 

ear; it is possible that curved interpolations could occur under 
more complex situations. 

Depth discontinuities and transparent surfaces 
A very different result occurred when there was a large disparity 
difference between positions A and C (-6.00’ and +6.00’, re- 
spectively). Figure 20 shows the patterns arising when the stim- 
uli were presented alone (Fig. 20ai-ci), and simultaneously (Fig. 
20aikii). Disparities for the new patterns arising at po- 
sitions A and C were assigned, as before, to the disparity cor- 
responding to the minima of the RMS error curves (Fig. 21a, 
c). For the middle position, on the other hand, the RMS curve 
is different from anything seen before: there is a double dip (Fig. 
21b). This means that the pattern of activity formed in the 
middle position (Fig. 20bii) can correspond equally well to 2 
different disparities. Such a double dip always occurred when 
the disparity difference presented to the network was sufficiently 
large (as will be quantified below), but only if the connection 
strengths were positive. Inhibitory interactions produced a sin- 
gle dip, no matter how large the disparity difference. 

We interpret patterns having a double dip RMS curve as 
representing 2 disparities simultaneously at a single position. 
This interpretation is indicated in Figure 22b, which summa- 
rizes the results just presented. It shows a slight shift in the 

apparent disparities at the lateral positions A and C (shifts of 
If-7”, respectively), and 2 simultaneous disparities at the inter- 
mediate position B, which were almost equal to the lateral dis- 
parities. 

There are 2 circumstances in which there may be multiple 
disparities simultaneously at a single point. The first is a depth 
discontinuity in the surface of an object, and the second is when 
there is a set of transparent surfaces. What these situations have 
in common is that nearby points in the visual field may have 
small spatial separations, yet belong to surfaces at radically dif- 
ferent depths (that is, have large differences in disparity, and 
therefore large disparity gradients). The model suggests that the 
lateral interactions underlying these multiple-disparity phenom- 
ena are short range because in the model they occurred only for 
the short-range excitatory interactions and not the longer-range 
inhibitory ones. 

The failure of the model to produce linear interpolation when 
faced with large disparity gradients is a desirable feature. While 
it is appropriate to interpolate between sparse depth tokens on 
a smooth surface, it would not be desirable to do so for genuine 
discontinuities in the surface. Nor would it be good to join 2 
transparent surfaces with an imaginary surface interpolated 
transversely between them. The decision whether a population 
should be interpreted as a depth discontinuity or a transparent 
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Depth interpolation: 
(small disparity difference). 

Interpreting activity patterns 

ante of transparency. The disparity difference at the transition 
from averaging to transparency increased as a function of the 
mean disparity of the 2 sets of dots. The transition was gradual, 
in which the surface appeared roughened and thickened before 
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Figure 19. RMS curves, analogous to those of Figure 14, used to assign 
disparity interpretations to the activity patterns in Figure 18aii-cii. a, 
RMS curve for the pattern in Figure 18aii. The RMS minimum assigns 
that pattern an apparent disparity of -2.64’, and the vertical line&- 
dicates the physical stimulus disnaritv (that of Fig. 18ai. -3.00’). b. 
RMS curve for the pattern in Figure 1 &ii. The RMS minimum assigns 
it an apparent disparity of 0.00’. There is no vertical line here because 
there was no stimulus at this position. c, RMS curve for the pattern in 
Figure 18cii. RMS minimum assigns it an apparent disparity of +2.64’. 
The vertical line indicates the physical stimulus disparity (that of Fig. 
18ci, +3.00’). 

surface is likely to be made at a more global level than considered 
in this model, for there is little information available locally to 
distinguish between the 2 possibilities. 

The central premise of the model was that disparity is encoded 
by a population of units having broad, overlapping tuning curves. 
In such a distributed representation, the activity of a single unit 
gives only a coarse indication of the stimulus parameter. This 
does not mean that precise information is lost, but only that 
the information is dispersed over a pattern of activity in the 
population. Other ways of representing disparity were also con- 
sidered, namely, interval encoding, in which a separate unit is 
dedicated to each small range of disparity, and rate encoding, 
in which disparity is proportional to the firing rate of a single 
unit. Both of these schemes were found to be inconsistent with 
the physiological or psychophysical data. 

A transition from depth averaging to transparency has been The concept of distributed representations arose in nineteenth 
observed psychophysically by Parker and Yang (1989). They century psychophysics with the idea that color is encoded by 
measured the depth percept that resulted when random-dot ster- the relative activities in a population of 3 overlapping color 
eograms were constructed by intermixing dots from 2 depth channels. In our model, the parameter is “disparity” rather than 
planes. For small disparity differences, the percept was ofa single “color,” and more mechanisms were required to explain the 
surface at the average of the 2 depths, but for large differences, data, but the essence of the idea is the same. In a similar manner, 
the percept was that of 2 simultaneous depths and the appear- it is possible to apply the concept to many other parameters. 

it broke into 2 transparent surfaces. 
The transition between averaging and transparency in our 

model occurs at the disparity difference for which the RMS error 
curve goes from one dip (as in Fig. 196) to 2 dips (as in Fig. 
2 1 b). The following procedure was used to find this disparity. 
Starting with equal disparities at A and C, the disparity at A 
was decreased and that at C increased by an equal amount, so 
that mean disparity, (dA + dJ2, remained constant but the 
disparity difference, 1 d, - dc 1, increased. The smallest differ- 
ence producing 2 equal dips was defined as the onset of trans- 
parency. It should be pointed out that the single dip does not 
suddenly break into 2 equal dips, except for the case of sym- 
metrical modulation about zero mean disparity. Rather, the 
second dip starts as a small outpouching which grows as the 
disparity difference increases, until both become equal. There- 
fore, our criterion for the appearance of transparency is the end 
point of a gradual transition. 

The disparity difference required to produce transparency in 
the model increased rapidly with mean disparity (Fig. 23). This 
is also a feature of the data of Parker and Yang (1989). While 
the modeling and data curves are qualitatively similar in shape, 
the model curve is shifted up by a factor of 4. The reason for 
this is not known. Changing synaptic weights k in Eq. 9 over a 
reasonable range does not appreciably affect transparency onset 
in the model, nor can the differences be explained by criterion 
differences in judging the onset of transparency. One possibility 
is that the large, 2-dimensional random-dot patterns used by 
Parker and Yang (1989) lead to lower transparency-onset thresh- 
olds than the small, l-dimensional patterns considered in the 
model. 

Discussion 

We have had 2 goals. The first was to constrain possible mech- 
anisms of stereopsis by modeling a variety of other binocular 
phenomena, in continuation with previous models on binocular 
brightness summation (Lehky, 1983) and binocular rivalry (Leh- 
ky, 1988). The second was to provide a general framework for 
population coding models which may be applicable by analogy 
to other neural parameters unrelated to binocular vision. 



The Journal of Neuroscience, July 1990, W(7) 2295 

Depth interpolation: 
(large disparity difference) 

i. Population activity patterns ii. Population activity patterns 
no lateral interactions with lateral interactions 
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Figure 20. Activity diagram for 3 in- 
teracting locations (Fig. 17) but with a 
large difference in disparities at the 2 
lateral positions instead ofthe small dif- 
ference shown in Figure 18. Left col- 
umn shows unperturbed patterns of ac- 
tivity. ai, Response to disparity of 
-6.00’. bi, No pattern because no stim- 
ulus was presented at the middle po- 
sition. ci, Response to disparity of 
+6.00’. Right column shows new pat- 
terns arising when stimuli at different 
locations were presented simultaneous- 
ly, with lateral interactions. aii, New 
pattern in response to -6.00’, which 
should be compared to ai. bii, New pat- 
tern arising where there was no pre- 

-0.5 5 88 min vious response. cii, New pattern arising 
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Disparity (min) compared to ci. 

Examples of this are models incorporating a population code 
for the visual representation of stimulus size (Gelb and Wilson, 
1983), and for the motor representation of arm movements 
(Georgopolous et al., 1986). 

Since this model is concerned in part with the representation 
of transparent stimuli, it is possible that analogous models can 
be constructed for other transparency phenomena besides those 
arising from depth. A specific example involves motion. Adel- 
son and Movshon (1982) studied the percept of 2 superimposed 
gratings drifting in different directions and found conditions 
under which they “cohered” to form a single drifting plaid, or 
alternatively appeared as 2 transparent surfaces sliding over 
each other, depending on how similar the 2 gratings were in 
various respects (speed, spatial frequency, contrast, etc.). This 
appears analogous to the transition from depth averaging to 
transparency discussed earlier, and perhaps it can be understood 
in terms of a distributed representation for motion formally 
analogous to the one used for disparity here. 

Some consequences of population coding were analyzed by 
Hinton et al. (1986) in the context of model neurons allowed 
to have only 2 levels of firing, fully on or fully OK This allows 
a parameter to be encoded by a set of overlapping, rectangular- 
shaped tuning curves. Using binary-valued units rather than 
continuously valued units, as used here, leads to differences 
about how limits to discriminability arise. In Hinton’s model, 

which does not include noise, the accuracy with which infor- 
mation is encoded is determined by the number of rectangular 
tuning-curve boundaries crossed as the parameter’s value is 
changed. As formulated by Hinton, this is a function of both 
the number and widths of the tuning curves. The situation is 
very different for a population of continuous-valued units. For 
this case, in the absence of noise a parameter’s value can be 
encoded with infinite precision independent of the number and 
widths of the tuning curves. Discriminability in a population of 
continuously valued units is limited by the amount of noise and 
the slopes of the tuning curves, and not the widths of the tuning 
curves. 

Our model leads to the conclusion that the population size 
encoding disparity for a small patch of visual field may be as 
small as a few tens of units or as large as a few hundred. This 
is much larger than the 3 found in color vision, which is the 
best established example of population coding. However, the 
small size of the color representation may be unusual. Having 
a large number of color mechanisms requires the burden of 
maintaining separate genes for each type of pigment molecule 
(Nathans et al., 1986). In contrast, there appears to be less cost 
in providing a broad range of values for other visual parameters, 
which may involve gradations in the biophysical or anatomical 
characteristics of the underlying neurons. Some of the advan- 
tages of building redundancy into a representation by having 
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Depth interpolation: 
(large disparity difference). 

Interpreting activity patterns 
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RMS curves used to assign apparent disparities to the ac- _ 
tivity patterns shown in Figure 20aikii. a, RMS curve tar the pattern 
in Figure 20aii. RMS minimum assigns it an apparent disparity of 
-5.88’, and the vertical line indicates the physical stimulus disparity 
(that of Fig. 20ai. or -6.00’). b, RMS curve for the pattern in Figure 
18bii. Because this curve has 2 equal minima, we interpret it as rep- 
resenting 2 disparities simultaneously (-5.66’ and +5.66’). There is no 
vertical line here because there was no stimulus at this position. c, RMS 
curve for the pattern in Figure 18cii. RMS minimum assigns it an 
apparent disparity of +5.88’. The vertical line indicates the physical 
stimulus disparity (that of Fig. 18ci, or +6.00’). 

large populations were outlined earlier, and it seems reasonable 
that population codes may in general be substantially larger than 
that for color. In fact, the low redundancy in color coding may 
be the reason why color anomalies appear to be the most com- 
mon visual defect of neural origin. 

In color vision, the parameter of interest is wavelength, a 
l-dimensional variable whose representation exists in a 
3-dimensional space. When assigning a color interpretation to 
the pattern of activity within this small population, the vector 
of 3 activities is not reduced to a single number. There is nothing 
simpler than the pattern itself, which forms a characteristic rep- 
resentational “spectrum” for each wavelength. In the same man- 
ner, our model represents disparity (another 1 -dimensional pa- 
rameter) in a high (possibly several hundredwimensional space. 
In our model, a representational spectrum for disparity (such 
as those in Fig. 13) is not reduced to a single number when 
attaching an interpretation to it. Interpreting population codes 

There are several approaches to the problem of deciding what In contrast, the “averaging” method reduces the dimen- 
parameter value a pattern of activity in a population represents. sionality of a representation during the interpretation process. 
One approach is what we call the “spectrum” method, used in For example, in the model of Gelb and Wilson (1983), a 
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Figure 22. a, Summary of results for a small disparity difference be- 
tween positions A and C (Figs. 18 and 19). Black and white dots show 
disparities in the absence and presence of lateral interactions, respec- 
tively. The apparent disparity impressed in the blank middle spot was 
the average of the 2 lateral disparities. b, Summary of results for a large 
disparity difference between positions A and C (Figs. 20 and 2 1). Black 
and white dots show disparities in the absence and the presence of lateral 
interactions, respectively. Two disparities are shown at the middle spot 
because the RMS curve (Fig. 21b) had 2 equal minima. This situation 
may occur for depth discontinuities on a surface or for transparent 
surfaces. 

this model of disparity and also in color vision. A second ap- 
proach is what we call the “averaging” method, used in the 
population code models of Gelb and Wilson (1983) and Geor- 
gopolous et al. (1986). 
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Mean Disparity (min) 

Figure 23. Disparity difference between positions A and C (Fig. 17) 
required to produce transparency, as a function of the mean of the 2 
disparities. The criterion for transparency onset was an activity pattern 
impressed at the middle position B that had an RMS curve with 2 equal 
minima, such as that in Figure 2 1 b. 

1 -dimensional parameter (size) is represented in a 4-dimensional 
space formed by a population of 4 size-tuned units. However, 
to assign an interpretation to the pattern of activity, the 
4-dimensional representation is collapsed down to 1 dimension, 
which is the average of the tuning curve peaks weighted by the 
activity level for each component (following a method suggested 
by Georgeson, 1980). 

Georgopolous et al. (1986) also used the “averaging” method, 
although in this case the parameter of interest, the direction of 
arm movement, is 3-dimensional. Their representation of 
movement is a 672-dimensional space, based on 224 direction- 
selective units in their sample multiplied by 3 direction param- 
eters measured for each cell. The pattern of activity in this 
population was interpreted by collapsing the high-dimensional 
representational space down to 3 by calculating a weighted sum 
of tuning curve peaks (which for present purposes is the same 
as calculating a weighted average). Their interpretation of pop- 
ulation activity is based entirely on this sum, and not on any 
particular spectrum of activity within that population. Indeed, 
that second option was not available to Georgopolous et al. 
(1986) given the technical difficulties of simultaneously moni- 
toring populations of neurons. 

The “averaging” method would not have been suitable for 
the model presented here because that method must assign a 
single disparity for each pattern of activity. We required a meth- 
od that could assign multiple values to a single pattern, in order 
to handle transparent surfaces and discontinuities. For this pur- 
pose, the higher dimensionality inherent in assigning meaning 
through an activity spectrum was more suitable. High-dimen- 
sional representations are also more suitable for multiplexing 
several parameters (depth, color, motion, etc.) in a single pop- 
ulation. 

The above distinction between the spectrum and averaging 
methods can be generalized. Define P as the dimensionality of 
the parameter of interest and R as the dimensionality of the 
number used to assign an interpretation to the population rep- 
resenting the parameter. (R is not the dimensionality of the 

population code itself.) If R = P, the population-code model is 
using the averaging method, and if R > P, then the model is 
using the spectrum method. 

Color, the only parameter for which the characteristics of the 
encoding population are well established, clearly uses the spec- 
trum method. Averaging does not work. This does not guarantee 
that the same is true for all parameters. If one knows the nature 
of the population encoding a particular parameter, it may be 
possible to determine what interpretive method the brain uses 
in that instance by examining which stimuli are physically dis- 
tinct but perceptually indistinguishable. Both the “averaging” 
method and the “spectrum” method will yield sets of stimuli 
that are indistinguishable, but the sets will be different in each 
case. Unfortunately, determining the relevant neural population 
poses a serious technical challenge. 

Consequences of using a population code for disparity 

The choice of a distributed representation for disparity affects 
the structure of any model of stereopsis that is constructed using 
it. Consider, for example, the model of Marr and Poggio (1976), 
which is based on an interval code. In that model, false matches 
are eliminated by using inhibition to shut off all units tuned to 
the wrong disparities at a given location, a form of winner-take- 
all circuit. This strategy clearly is not suitable with a distributed 
representation. The goal in a distributed code is to alter the 
relative firing rates to produce a new pattern of activity and not 
to shut off all neurons in a population except one, for a single 
broadly tuned unit provides little information. A general point 
to emphasize here is the interdependence between the hardware 
(broad, overlapping units vs. narrow, nonoverlapping ones) and 
the algorithm used in a given computation. 

Interpolation is another example where the choice of repre- 
sentation affects how subsequent computational problems are 
approached. Depth interpolation has previously been modeled 
by Grimson (1982) and Terzopolous (1988) using interval en- 
coding of depth. In their models, spline functions are fit through 
the blank regions between the surface tokens used in the stereo 
matching process. This procedure interpolates smoothly through 
points on a continuous surface but also interpolates through real 
depth discontinuities, giving sharp breaks the appearance of 
being shrouded. These models deal with the problem by adding 
separate mechanisms that recognize discontinuities and atten- 
uate the interpolation process accordingly (Koch et al., 1986). 
In our model, interpolation depends on the disparity gradient 
in a manner such that this adjustment falls out automatically 
without any shift in parameters or any additional mechanisms. 

Quantitative studies of binocular depth interpolation have 
been conducted by Collett (1985), as well as Wurger and Landy 
(1989), using random-dot stereograms. In both studies, a mon- 
ocular region was bounded on each side by frontoparallel planes 
at different depths. The apparent depth in the monocular region 
was monitored by matching it with a small probe. The inter- 
polation was found to be very close to linear. This is consistent 
with the model behavior for small disparity gradients (Fig. 22a), 
and indeed their data were collected for small depth differences 
(25”-30”) and large lateral separations of several degrees. They 
did not collect data for large disparity gradients, under which 
we would predict that linear interpolation breaks down in favor 
of a step function (Fig. 22b). It is interesting, however, that 
Collett (1985) found a step-function interpolation when the small 
disparity difference was augmented by other differences, such 
as dot density or motion. 
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Other data related to depth interpolation come from Mitchi- 
son and McKee (1985, 1987a, b), and related work by McKee 
and Mitchison (1988). They studied stereograms composed of 
rows of dots. When dot spacing was small (< 6’), the perceived 
depths for the middle dots did not match any possible physical 
disparity in the stimulus, but rather were determined by a linear 
interpolation of the disparities at the end points of the rows. 
The predominant influence of the end points probably reflects 
some aspect of the matching process during stereopsis, as Mitch- 
ison and McKee suggest, and as such is beyond the scope of this 
model. However, the perception of apparent depths different 
from physical disparities fits in well with the properties of our 
model. Perturbations in the pattern of activity in a local pop- 
ulation of disparity-tuned units caused by lateral interactions 
can lead to this effect. 

In conclusion, our approach has been to consider a variety 
of neurophysiological and psychological data and use them in 
combination to constrain possible models of binocular orga- 
nization in the primate visual system. Some models fit only part 
of the data, such as rate encoding of disparity, which can par- 
simoniously account for the psychophysical stereoacuity data 
but is inconsistent with the neurophysiology. Conversely, the 
psychophysics also constrains interpretation of the neurophys- 
iology, for out of the large, random sample of disparity tuning 
curves that have been measured, there is no reason to group 
them into any specific set other than from consideration of the 
psychophysics. This interaction and mutual constraint between 
physiological and behavioral data provide a particularly rich 
environment for the development of neural theory. 
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